

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES

OBSERVATIONS ON $x^2 = y^{2a+1} + z^{2b+1}$

Dr. N. Thiruniraiselvi^{*1} & Dr. M.A. Gopalan²

^{*1}Assistant Professor, Department of Mathematics, SRM Trichy Arts and Science College ,India ²Professor, Department of Mathematics, SIGC, India

Abstract

This paper aims at determining the non-zero distinct integer solutions to the Fermat equation of the form $x^2 = y^{2a+1} + z^{2b+1}$. In particular, we have presented integer solutions to two different choices of Fermat equations represented by $x^2 = y^{8b+5} + z^{2b+1}$ & $x^2 = y^{4A+1} + z^{4A+3}$. A few interesting relations between the solutions are also given.

Keyword: Generalized Fermat equation, Diophantine equation, Integer solutions.

I. INTRODUCTION

Let $p, q, r \in \mathbb{Z}_{\geq 2}$. The ternary equation with exponents p, q, r represented by $x^p + y^q = z^r$ is known as the generalized Fermat equation which has been analyzed for many exponents (p,q,r) including varieties of infinite families of exponents {L.J.Mordell [4], Michael A.Bennett et al., [8], A.Kraus [15], B.Poonen et al.,[17], S.Abdelalim,H.Dyani [18]}. In [1], D.Brown has obtained Primitive integral solutions to $x^2 + y^3 = z^{10}$. In [2], N.Bruin has solved the equation $x^3 + y^9 = z^2$ for the primitive solutions. A complete solution to $X^2 + Y^3 + Z^5 = 0$ is solved by J.Edwards [3]. In [5,6], The generalized Fermat equations $x^3 + y^4 + z^5 = 0, X^2 + Y^3 = Z^{15}$ are analyzed by S.Siksek and M.Stoll. In [7,9], M.Bennett et al., solved the Diophantine equation $x^{2n} + y^{2n} = z^5$, $A^4 + 2^{\delta}B^2 = C^n$. In [10], N.Billerey, L.V.Dieulefait has analyzed Fermat-type equation $x^5 + y^5 = dz^p$. In [11], N.Bruin has solved the Diophantine equations $x^2 \pm y^4 = \pm z^6$ and $x^2 + y^8 = Z^3$ for the integer solutions. In [12,14], I.Chen, and H.Darmaon have considered the equation $a^2 + b^{2p} = c^5$, $x^n + y^n = z^2$ and $x^n + y^n = z^3$ for their integer solutions. In [13], S.Dahmen. solved the Diophantine equation $x^2 + y^{2n} = z^3$ for their integer solutions. In [16], B.Poonen has considered the Diophantine equations of the form $x^n + y^n = z^m$ for their integral solutions. A search is made for obtaining integer solutions to three special generalized Fermat equations $x^3 + y^4 = z^{13}, x^2 + y^3 = z^{15}$ and $x^4 = y^5 + z^7$ by M.A.Gopalan et al., [20]. In [21], B.L.Bhatia and Supriya Mohanty have considered Nasty Numbers and their characterizations. Also, one may refer the website [19].

These results motivated us to search for integer solutions to the Fermat equation represented by $x^2 = y^{2a+1} + z^{2b+1}$. In this paper, a method has been described to solve this equation in integers for the choices of a & b given by $a = (2b+1)2^k \& a = 2A, b = 2A+1$. It seems that this set of solutions is not presented earlier. A few interesting relations between the solutions are also given.

[Thiruniraiselvi, 5(10): October 2018] DOI 10.5281/zenodo.1475189 II. METHOD OF ANALYSIS

ISSN 2348 - 8034 Impact Factor- 5.070

The generalized Fermat equation to be solved is given by

$$x^{2} = y^{2a+1} + z^{2b+1}$$

$$= n^{\alpha} (n+1)^{2ab+a+b+1}; y = n^{\beta} (n+1)^{2b+1}; z = n^{\gamma} (n+1)^{2a+1}$$
(1)

Assuming $x = n^{\alpha} (n+1)^{2\alpha + a + b + 1}$; $y = n^{\beta} (n+1)^{2b + 1}$; z in (1), we get $n^{2\alpha + 1} + n^{2\alpha} = n^{(2a+1)\beta} + n^{(2b+1)\gamma}$ Equating the exponents on both sides, we have

$$(2\alpha + 1) = (2a + 1)\beta$$
⁽²⁾

$$(2\alpha) = (2b+1)\gamma \tag{3}$$

We present below two different methods of solving (2) and (3) leading to two different sets of solutions to (1).

Method 1:

The substitution $\gamma = 2^{k+1}, k \ge 0$ in (3) gives $\alpha = (2b+1)2^k$ and from (2), we have $\beta = \left(\frac{(2b+1)2^{k+1}+1}{(2a+1)}\right)$

In particular, when $a = (2b+1)2^k$, it is noted that $\alpha = (2b+1)2^k$; $\beta = 1$; $\gamma = 2^{k+1}$

Result: The values of x, y, z satisfying the considered equation are given by

$$\begin{aligned} x &= n^{(2b+1)2^{k}} (n+1)^{2(2b+1)2^{k} b + (2b+1)2^{k} + b + 1} \\ y &= n(n+1)^{2b+1} \\ z &= n^{2^{k+1}} (n+1)^{2(2b+1)2^{k} + 1} \end{aligned}$$

Illustration:

For k = 1 in the above solutions, we get the solutions of the equation $x^2 = y^{8b+5} + z^{2b+1}$ to be

$$x = n^{(4b+2)} (n+1)^{(8b^2+9b+3)}$$
(1a)

$$y = n(n+1)^{(2b+1)}$$
 (1b)

$$z = n^4 (n+1)^{(8b+5)} \tag{1c}$$

A few numerical examples are exhibited in the table below:

n	b	Х	У	Z
2	1	$2^6 * 3^{20}$	$2^{1}*3^{3}$	$2^4 * 3^{13}$
2	4	$2^{18} * 3^{167}$	$2^1 * 3^9$	$2^4 * 3^{37}$
3	2	$3^{10} * 4^{53}$	$3^1 * 4^5$	$3^4 * 4^{21}$
3	3	$3^{15} * 4^{102}$	$3^1 * 4^7$	$3^4 * 4^{29}$

163

ISSN 2348 - 8034 Impact Factor- 5.070

Properties:

A few interesting properties among the solutions of (1a),(1b) and (1c) are presented below:

1. $n^3(n+1)^{6b+4}y = z$ **Proof:** Dividing (1c) by (1b), the above result is obtained. 2. $xy^{4(8b^2+13b+5)} = (z-y^4)^{4b+2}z^{8b^2+9b+3}$

Proof:
$$\frac{z}{y^4} = (n+1) \tag{4}$$

Therefore,
$$n = \frac{z - y^4}{y^4}$$
 (5)

Using (4) and (5) in (1a), we get after simplification $xy^{4(8b^2+13b+5)} = (z - y^4)^{4b+2} z^{8b^2+9b+3}$

164

- 3. $xy^2 = z^{b+1}$ **Proof:** $y^2 = n^2 (n+1)^{4b+2}$ Raising (1c) to the power b, we get $z^b = n^{4b} (n+1)^{8b^2 + 5b}$ Therefore, $\frac{x}{v^2 z^b} = n + 1 = \frac{z}{v^4}$ {by (4)} Thus, $xy^2 = z^{b+1}$ 4. $v^{16b+18} = z^{4b+2}(z-v^4)^2$ **Proof:** $v^2 = n^2 (n+1)^{4b+2}$ Raising (1b) to the power 4b + 2, we have $y^{4b+2} = n^{4b+2} (n+1)^{8b^2 + 8b+2}$ Using (4) and (5), we have $y^{16b+18} = z^{4b+2}(z-v^4)^2$ 5. $y^{16b+16} = xz^{3b+1}(z-y^4)^2$ **Proof**: Raising (1c) to the power b + 1, we get $z^{b+1} = n^{4b+4}(n+1)^{8b^2+13b+5} = xn^2(n+1)^{4b+2}$ Employing (4) and (5), we have $y^{16b+16} = xz^{3b+1}(z-y^4)^2$
- 6. Each of the following represents a Nasty Number [21]

i.
$$6\left(\frac{xy^{4(8b^{2}+13b+5)}}{z^{8b^{2}+9b+3}}\right)$$

ii. $6\left(y^{16b+18}\right)$
Proof for i:

ISSN 2348 - 8034 Impact Factor- 5.070

In property 2, it is observed that
$$\left(\frac{xy^{4(8b^{2}+13b+5)}}{z^{8b^{2}+9b+3}}\right)$$
 is a perfect square
Thus, $6\left(\frac{xy^{4(8b^{2}+13b+5)}}{z^{8b^{2}+9b+3}}\right)$ is a Nasty Number.

Proof for ii:

From property 5, it is seen that (y^{16b+18}) is a perfect square. And thus, $6(y^{16b+18})$ is a Nasty Number. 7. Each of the following represents a Perfect square

i.
$$\left(\frac{y^{16b+18}}{z^{4b+2}}\right)$$

ii. $\left(\frac{y^{16b+16}}{xz^{3b+1}}\right)$

Proof for i: The above properties are readily obtained from properties 4 and 5.

8. (y^{24b+27}) is a cubical integer

Proof for ii: Dividing (1c) by (1b), we have $\frac{z}{y} = n^3 (n+1)^{6b+4}$

Using (4) and (5), it is noted that $y^{24b+27} = [(z-y^4)z^{2b+1}]^3$, which is a cubical integer.

Method 2:

Eliminating α between (2) & (3), we get

$$(2a+1)\beta - (2b+1)\gamma = 1$$
(5)

This is solved for suitable choices of a & b. In particular, taking a = 2A, b = 2A+1 in (5), it is satisfied by $\beta = 2A+1, \gamma = 2A$ and from (3), we have $\alpha = A(4A+3)$

Result: The solutions of $x^2 = y^{4A+1} + z^{4A+3}$ are given by

$$x = n^{(4A^2 + 3A)} (n+1)^{(8A^2 + 8A + 3)}$$
(2a)

$$y = n^{(2A+1)} (n+1)^{(4A+3)}$$
(2b)

$$z = n^{2A} (n+1)^{(4A+1)}$$
(2c)

A few numerical examples are exhibited in the table below:

n	Α	Х	У	Z
2	2	$2^{22} * 3^{50}$	$2^5 * 3^{11}$	$2^4 * 3^9$
3	1	$3^7 * 4^{18}$	$3^3 * 4^7$	$3^2 * 4^5$
4	2	$4^{22} * 5^{50}$	$4^5 * 5^{11}$	$4^4 * 5^9$
5	3	$5^{45} * 6^{98}$	$5^7 * 6^{15}$	$5^6 * 6^{13}$

[Thiruniraiselvi, 5(10): October 2018] DOI 10.5281/zenodo.1475189 Properties:

ISSN 2348 - 8034 Impact Factor- 5.070

A few interesting properties among the solutions of (2a),(2b) and (2c) are presented below:

i.
$$\left(\frac{y}{nz}\right)$$
 is a perfect square

Proof: Dividing (2b) by n(2c), we get $\left(\frac{y}{nz}\right) = (n+1)^2$, a perfect square

ii.
$$6\left(\frac{y^{20A+9}}{z^{20A+9}n}\right)$$
 is a Nasty Number.

Proof: Dividing (2b) by (2c) and raising to the power (20A+9), we get $\begin{pmatrix} v^{20A+9} \end{pmatrix}$ 20A+9, v^{40A+18}

$$\left(\frac{y^{20A+9}}{z^{20A+9}}\right) = n^{20A+9} (n+1)^{10A+10}$$

Therefore, $6\left(\frac{y^{20A+9}}{z^{20A+9}n}\right)$ is a Nasty Number.

iii.
$$\left(\frac{yz}{n^{4A+1}}\right)$$
 is a biquadratic integer.

Proof: Multiplying (2b) and (2c), we have $yz = n^{4A+1}(n+1)^{8A+4}$

Therefore,
$$\left(\frac{yz}{n^{4A+1}}\right) = [(n+1)^{2A+1}]^4$$
, a biquadratic integer
iv. $\left(\frac{n^A x}{(n+1)^{8A^2} z^2}\right)$ is a perfect square
Proof: $\left(\frac{x}{z^2}\right) = n^{4A^2 - A} (n+1)^{8A^2 + 1}$
 $\left(\frac{n^A x}{(n+1)^{8A^2 + 1} z^2}\right) = \left(n^{2A^2}\right)^2$, a perfect square
v. $\left(\frac{yz}{n^{4A+1} (n+1)^{2A+1}}\right)$ is a cubical integer.
Proof: (6) is written as
 $\left(\frac{yz}{n^{4A+1} (n+1)^{2A+1}}\right) = (n+1)^{6A+3} = [(n+1)^{2A+1}]^3$, a cubical integer.

166

[Thiruniraiselvi, 5(10): October 2018] DOI 10.5281/zenodo.1475189 III. CONCLUSION

ISSN 2348 - 8034 Impact Factor- 5.070

In this paper, we have considered the generalized Fermat equation $x^2 = y^{2a+1} + z^{2b+1}$ and obtained integer solutions for the choices of a & b given by $a = (2b+1)2^k \& a = 2A, b = 2A+1$. To conclude, one may attempt to find integer solutions to the considered Fermat equation for the other choices of a & b.

IV. ACKNOWLEDGEMENTS

The financial support from the UGC, New Delhi (F-MRP-5123/14(SERO/UGC) dated march 2014) for a part of this work is gratefully acknowledged

REFERENCES

- 1. D.Brown, Primitive integral solutions to $x^2 + y^3 = z^{10}$, Int.Math.Res.Not.IMRN(2012),423-426
- 2. N.Bruin, The primitive solutions to $x^3 + y^9 = z^2$, J.Number Theory 111,(2005),179-189.
- 3. J.Edwards, A complete solution to $X^2 + Y^3 + Z^5 = 0$, J.Reine Angew.Math. 571,(2004),213-236
- 4. L.J.Mordell, Diophantine equations, Academic Press, (1969).
- 5. S.Siksek and M.Stoll, Partial descent on hyperelliptic curves and the generalized Fermat equation $x^3 + y^4 + z^5 = 0$, Bull.London Math.Soc.44,(2012),151-166.
- 6. S.Siksek and M.Stoll, The generalized Fermat equation $X^2 + Y^3 = Z^{15}$, Archivder Mathematik, 105(5), (May-2014), 411-421.
- 7. *M.Bennett, The equation* $x^{2n} + y^{2n} = z^5$, *J. Theor. Nombres Bordeaux* 18(2), (2006), 315-321.
- 8. Michael A.Bennett, Imin chen, Sander R.Dahmen and Soroosh Yazdani, "Generalized Fermat Equations: A Miscellany", Int.J.Number Theory, 11(1), 92015), 1-28.
- 9. *M.Bennett, J.Ellenberg and N.Ng. The Diophantine equation* $A^4 + 2^{\delta}B^2 = C^n$, *Int.J.Number Theory*, 6, (2010), 311-338.
- 10. N.Billerey,L.V.Dieulefait.Solving Fermat-type equations $x^5 + y^5 = dz^p$, Math.Comp.79(2010),535-544.
- 11. N.Bruin. The Diophantine equations $x^2 \pm y^4 = \pm z^6$ and $x^2 + y^8 = Z^3$, compositioMath.118(1999),305-321.
- 12. I.Chen.On the equation $a^2 + b^{2p} = c^5$ Acta Arith.143(2010),345-375.
- 13. S.Dahmen. A refined modular approach to the Diophantine equation $x^2 + y^{2n} = z^3$, Int. J. Number Theory 7(2011), no.5,1303-1316.
- 14. H.Darmaon. On the Equations $x^{n} + y^{n} = z^{2}$ and $x^{n} + y^{n} = z^{3}$ Duke IMRN 72(1993),263-274.
- 15. A.Kraus. On the Equation $x^{p} + y^{q} = z^{r}$: a survey, Ramanujan J.3(1999),315-333.
- 16. B.Poonen, Some Diophantine equations of the form $x^n + y^n = z^m$ Acta Arith.86(1998),193-205.
- 17. B.Poonen, E.Schaefer and M.Stoll.Twists of X(7) and Primitive solutions to $x^2 + y^3 = z^7$, Duke Math.J. 137(2007),103-158.
- 18. S.Abdelalim,H.Dyani, "The Solution of the Diophantine Equation $x^2 + 3y^2 = z^2$ ", International Journal of Algebra, Vol.8(15),(2014),729-732.
- 19. Website: math.stackexchange.com.
- 20. M.A.Gopalan, S.Vidhyalakshmi, N.Thiruniraiselvi, D.Kanaka," On three special generalized Fermat equations", IJTRD, Vol.3(1), Jan-Feb., (2016), 97-99.

ISSN 2348 - 8034 Impact Factor- 5.070

21. B.L.Bhatia and Supriya Mohanty, Nasty Numbers and their characterizations, Mathematical Education, July-Sep., (1985), 34-37.

